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We study the corrections to the gyromagnetic ratio g, of the electron, due to a 
Coulomb field. They  are of order a 2. 

1. INTRODUCTION 

It is well known that there is a change in the magnetic moment  of an 
electron due to its motion in a Coulomb field (Breit, 1928; Margenau, 
1940). Thus the gyromagnetic ratio g of the electron also changes. Our 
purpose is to evaluate g in the above case. We use the virial theorem 
(V~tzquez, 1977). The variation of g is of order a 2, which is very small, but 
it has a suggestive interpretation. The interaction between the electron and 
the external Coulomb field is energetically weak, compared to the rest 
mass of the electron. But, in some way, the structure of the electron is 
modified by the external field. If, in a naive picture, we interpret the 
electron as a localized electromagnetic current, then we can imagine that 
this is modified by the field and thus there is a change in the magnetic 
moment of the electron. 

Also we evaluate the relativistic corrections to the Zeeman effect 
(Bethe and Salpeter, 1957), in terms of the modifications of the gyromag- 
netic ratio. 

2. HYDROGEN ATOM 

The Dirac equation for the electron in a Coulomb field is 

iTKOKtp - m~p+ (E+ e2 0 _ r ) ~ ,  ~ - 0  (2.1) 

the system of units which we use is that in which h = c -- 1. 
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Equation (2.1) may be separated in spherical coordinates (Bethe and 
Salpeter, 1957): 

yM i 'I 
t~s(r) ~2J 

(2.2) 

Where Yj~ are the spherical harmonics that satisfy the normalization 
condition 

Yj~ ) (yjM) d~2=l f(M+ (2.3) 

And we have the radial equations 

( e2 ) 
h '+  l+-----~h= E + - - + m  f 

/" r 

1 
f ' +  f = -  e + - - - m  h . .(2.4) 

r 

with K -- - ( 1  + 1) if j =  1 - 1/2, and K = 1 if j =  1 - 1/2. 
Applying the virial theorem (V~zquez, 1977) we obtain the integral 

condition 

f (m~q~- E,~+r (2.5a) 

and in terms of the radial functions 

fo~f " -  e fo~ 2r2 dr = h 2rZ dr 
m + E  

(2.5b) 

this is a useful relation in order to get the gyromagnetic ratio. 
The angular momentum associated to (2.2) is given by 

S=Mf q~+r (2.6) 

and with the help of (2.5b) we get 

2m f f  S = m +-----'E M h2r2dr (2.7) 
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The magnetic moment is 

1 
f r x j d 3 x  (2.8) N=g 

where j r  = e @ ~ ,  with e the electron charge. In order to compute ~t1~, it is 
useful to express (2.2) in the form 

~p = e - lEt 

where ai= ai(r,O ). Thus we get 

~1 ~--'~)~2 ~-~0 

alei(M - 1/2)~ ] 

a2ei(M+ 1/2)~ } 
ia3ei(M - l/2)w ] 

ia4ei(M+ 1/2)w j 

(2.9) 

where 

1+  1/2 

~3=Y~=2~refo~~ (2.10) 

We distinguish two cases: 
( l ) j=  l+  1/2[~tC = - ( l +  1)]. Then 

4(I+ 1) f0 fhr3dr = eM (2/+ 1)(2/+ 3) (2.11) 

and with the help of the radial equations (2.4) we get 

- e 4M( /+  1) m + Z E ( l +  1) fo~h2r2dr 
~=2m (2l+ 1)(2/§ m+E (2.12) 

and the gyromagnetic ratio is 

~92 l+1 
g= [ - ( e / 2 m ) S ]  ----2(2l+1)(21+3) [ l + 2 e ( l + l ) ]  (2.13) 
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Expanding e we get 

g 2 ( l + 1 ) (  1+1 a 2 ) 
(2l+1) 1 - 2 l + 3  n - -S ' ' "  (2.14) 

For the spherically symmetric states ( l=0) we have 

ot 2 
2 (2.15) g = 2 - -  ~ (1 -  e ) - - 2 -  ~ n-- 7 

And if e--> 1 (free state) then g-->2. 
(2)j= l -  1/2(K = l). In this case 

- -  4elM fo o o  

92~= (21+ 1)(2l-  1) fhr3dr (2.16) 

and with the help of the radial equation (2.4) we get 

1 
g = 2  (21+ 1)(2l-  1) (21e- 1) (2.17) 

' ~  ) 
g "  21+ 1 2 l -  1 n 2 "'" (2.18) 

The first term in (2.14) and (2.18) is the Land6 factor, which is 
independent on the energy. 

Remark 1. If we consider the Gordon decomposition of the current 

(2.19) 

we may evaluate the contributions to the magnetic moment due to the 
convection current ORe) and the current associated with the intrinsic 
magnetization of the electron (~O2s). In particular for the S states we get 

47r e e - 1  r ~ 

Jo h2r2 dr 
~2c= 3 m l + e  

4~r e 2 + e fo~176 dr 
~ s = 3  m l + e  

(2.20) 
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Thus we can define two gyromagnetic ratios go, gs (go + gs = g) 

2+e  
g~=2 1 +2e 

2 4e2+e -5  
go= 3 l+2e  (2.21) 

When e--~l~g,--~2 and &--->0. 

Remark 2. The relativistic corrections to the Zeeman effect (Bethe 
and Salpeter, 1957), can be evaluated in terms of the variation correspond- 
ing to the gyromagnetic ratio, as follows: the magnetic term in the Dirac 
Hamiltonian is -eot.A, with A the vector potential. Since the magnetic 
field is constant and chosen in the 0Z direction 

A=�89 �89 By, Bx,O) 

The correction to the energy in the first approximation is 

Ae= f - e ~  + et'A~bd3x 
f ~b +~pd3x 

(2.22) 

and using (2.6) and (2.10) we get 

Ae = �89 gttoB M (2.23) 

where g is given by (2.13) and (2.17) and ~ is the Bohr magneton. Thus the 
relativistic corrections to the Zeeman effect are obtained in terms of the 
corrections to g. 
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